
1/5

Learning the shell - Lesson 9: Permissions
linuxcommand.org/lc3_lts0090.php

Permissions

The Unix-like operating systems, such as Linux differ from other computing systems in that
they are not only multitasking but also multi-user.

What exactly does this mean? It means that more than one user can be operating the
computer at the same time. While a desktop or laptop computer only has one keyboard and
monitor, it can still be used by more than one user. For example, if the computer is attached
to a network, or the Internet, remote users can log in via ssh (secure shell) and operate the
computer. In fact, remote users can execute graphical applications and have the output
displayed on a remote computer. The X Window system supports this.

The multi-user capability of Unix-like systems is a feature that is deeply ingrained into the
design of the operating system. If we remember the environment in which Unix was created,
this makes perfect sense. Years ago before computers were "personal," they were large,
expensive, and centralized. A typical university computer system consisted of a large
mainframe computer located in some building on campus and terminals were located
throughout the campus, each connected to the large central computer. The computer would
support many users at the same time.

In order to make this practical, a method had to be devised to protect the users from each
other. After all, we wouldn't want the actions of one user to crash the computer, nor would we
allow one user to interfere with the files belonging to another user.

This lesson will cover the following commands:

File Permissions

On a Linux system, each file and directory is assigned access rights for the owner of the file,
the members of a group of related users, and everybody else. Rights can be assigned to
read a file, to write a file, and to execute a file (i.e., run the file as a program).

To see the permission settings for a file, we can use the ls command. As an example, we
will look at the bash program which is located in the /bin directory:

[me@linuxbox me]$ ls -l /bin/bash -rwxr-xr-x 1 root root 1113504 Jun 6 2019 /bin/bash

Here we can see:

https://linuxcommand.org/lc3_lts0090.php
https://linuxcommand.org/lc3_man_pages/ssh1.html


2/5

The file "/bin/bash" is owned by user "root"
The superuser has the right to read, write, and execute this file
The file is owned by the group "root"
Members of the group "root" can also read and execute this file
Everybody else can read and execute this file

In the diagram below, we see how the first portion of the listing is interpreted. It consists of a
character indicating the file type, followed by three sets of three characters that convey the
reading, writing and execution permission for the owner, group, and everybody else.

 

chmod

The chmod command is used to change the permissions of a file or directory. To use it, we
specify the desired permission settings and the file or files that we wish to modify. There are
two ways to specify the permissions. In this lesson we will focus on one of these, called the
octal notation method.

It is easy to think of the permission settings as a series of bits (which is how the computer
thinks about them). Here's how it works:



3/5

rwx rwx rwx = 111 111 111 
rw- rw- rw- = 110 110 110 
rwx --- --- = 111 000 000 

and so on... 

rwx = 111 in binary = 7 
rw- = 110 in binary = 6 
r-x = 101 in binary = 5 
r-- = 100 in binary = 4

Now, if we represent each of the three sets of permissions (owner, group, and other) as a
single digit, we have a pretty convenient way of expressing the possible permissions
settings. For example, if we wanted to set some_file to have read and write permission for
the owner, but wanted to keep the file private from others, we would:

[me@linuxbox me]$ chmod 600 some_file

Here is a table of numbers that covers all the common settings. The ones beginning with "7"
are used with programs (since they enable execution) and the rest are for other kinds of files.

 

Value Meaning

777 (rwxrwxrwx) No restrictions on permissions. Anybody may do anything. Generally
not a desirable setting.

755 (rwxr-xr-x) The file's owner may read, write, and execute the file. All others may
read and execute the file. This setting is common for programs that are used by all
users.

700 (rwx------) The file's owner may read, write, and execute the file. Nobody else has
any rights. This setting is useful for programs that only the owner may use and
must be kept private from others.

666 (rw-rw-rw-) All users may read and write the file.

644 (rw-r--r--) The owner may read and write a file, while all others may only read the
file. A common setting for data files that everybody may read, but only the owner
may change.

600 (rw-------) The owner may read and write a file. All others have no rights. A
common setting for data files that the owner wants to keep private.

Directory Permissions



4/5

The chmod command can also be used to control the access permissions for directories.
Again, we can use the octal notation to set permissions, but the meaning of the r, w, and x
attributes is different:

r - Allows the contents of the directory to be listed if the x attribute is also set.
w - Allows files within the directory to be created, deleted, or renamed if the x attribute
is also set.
x - Allows a directory to be entered (i.e. cd dir).

Here are some useful settings for directories:

 

Value Meaning

777 (rwxrwxrwx) No restrictions on permissions. Anybody may list files, create new
files in the directory and delete files in the directory. Generally not a good setting.

755 (rwxr-xr-x) The directory owner has full access. All others may list the directory,
but cannot create files nor delete them. This setting is common for directories that
you wish to share with other users.

700 (rwx------) The directory owner has full access. Nobody else has any rights. This
setting is useful for directories that only the owner may use and must be kept
private from others.

Changing File Ownership

We can change the owner of a file by using the chown command. Here's an example:
Suppose we wanted to change the owner of some_file from "me" to "you". We could:

[me@linuxbox me]$ sudo chown you some_file

Notice that in order to change the owner of a file, we must have superuser privileges. To do
this, our example employed the sudo command to execute chown.

chown works the same way on directories as it does on files.

Changing Group Ownership

The group ownership of a file or directory may be changed with chgrp. This command is
used like this:

[me@linuxbox me]$ chgrp new_group some_file



5/5

In the example above, we changed the group ownership of some_file from its previous
group to "new_group". We must be the owner of the file or directory to perform a chgrp.

|


